
lnt. J. Henf Mass Transfer. Vol. 14. pp. 1149-1159. Pergamon Press 1971. Printed in Great Brstain 
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Abstract-We present a mathematical analysis of centrifugally driven thermal convection in a cylinder 
which rotates about its vertical axis. Two extensions are made of previous work. First, a heat flux through 
the side wall of the cylinder is considered and its effect on the Nusselt number for the top and bottom 
cylinder surfaces is determined. Secondly, a constant heat flux boundary condition for the horizontal 

surface is investigated. 

NOMENCLATURE 

cylinder radius ; 
g/o’s, the accelera’tion ratio; 
expansion coefficients in (23); 
acceleration of gravity ; 
cylinder half-height ; 
unit vector in the radial direction ; 
modified Bessel function of the 
first kind of order zero ; 
fluid thermal conductivity ; 
unit vector in the positive z direc- 
tion ; 
temperature difference ratio, de- 
finedin(14); 
two dimensional second order 
operator defined in (9), 
Nusselt number, 
external Nusselt number govern- 
ing heat flux through cylinder 
side wall ; 
fluid pressure ; 
fluid velocity vector ; 
heat flux per unit area ; 
radial coordinate ; 
r/a; 
expansion parameter for constant 
heat flux case, in (60) ; 

* Present address : Department of Chemical Engineering, 
Stanford University, Stanford, California 94305. 

temperature ; 

(T, - Tb)/2: 

(T - T,)/ATsection 1; 
(Qh/k) (T - To) section 2 ; 

radial velocity ; 
tangential velocity ; 

2 
V 

aATa>a 
section 1; 

2k 
V 
waQha 

section 2 ; 

axial velocity ; 
axial coordinate: 
z/h; 
coefficient of thermal expansion ; 
aAT/4, the thermal Rossby num- 
ber ; 
aQh/4k ; 
a/h, the aspect ratio ; 
v/2cohZ, the Ekman number ; 
dimensionless temperature ; 
fluid thermal diffusivity ; 
o/$k+. controlling parameter ; 
a/?*/&+ ; 
fluid kinematic viscosity ; 
fluid density ; 
V/K, the Prandtl number ; 
correction to conduction profiles ; 

G&r), x,(z), expansion functions for @(r,z) ; 
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*3 stream function defined by w = - between their work in which rotation is around 
r-l $,andu = r-l I(/=. an axis in the plate and work to be discussed 

w, rotational frequency. ’ below in which the axis of rotation is normal to 
Subscripts the flat surface. It is shown in [9] that the 

:: 
top conditions ; Coriolis acceleration has a very small effect on 
bottom conditions ; the rate of heat transfer to the rotating plate. 

0, reference conditions ; We have recently analyzed centrifugally driven 
0, 1,2, expansion indices ; thermal convection in a fluid contained between 

00, ambient conditions. two horizontal disks of infinite radius [5]. The 
Superscrip?? disks rotate at the same angular velocity about 

reduced quantity (pressure) ; a common axis of rotation which is normal to 
* dimensionless quantities. both the disks. The top disk is heated relative 

to the bottom disk. A characteristic rotational 
Reynolds number is large such that a boundary 

INTRODUCTION 
layer regime occurs. A balance between the 
centrifugal and Coriolis forces produces a strong 

IF A TEMPERATURE difference is imposed normal tangential circulation. However, a secondary 
to an acceleration in a fluid, motion will be flow produced by Ekman (boundary) layers on 
produced. The most common example of this, the two disks makes large heat transfer rates 
of course, is free convection in which the possible. 
acceleration in question is that of gravity. The 
centrifugal acceleration in a rotating fluid can 
have a similar effect. Thus consider a rotating 
fluid which would be in solid body rotation if -f 

w 

it were isothermal. Now impose a temperature 
difference normal to the centrifugal accelera- 
tion; motion relative to the solid body rotation 
will be induced and this motion will produce 
an augmentation of heat transfer over that 
which would occur in the absence of convection. 
The centrifugal acceleration can be many times 
greater than that of gravity, and it is of interest 
to determine under what conditions the effected 
heat fluxes are large. 

It was shown by Schmidt that rotation could 
augment heat transfer in water cooled turbine 
blades [13]. More recently, several studies have 
been made of convection in rotating tubes 
[l&12] and in a closed loop rotating thermo- 
syphon [2]. 

FIG. 1. The rotating cylinder. 

Lemlich and co-workers have made an exten- In [3], we extended the analysis to a radially 
sive study of the convection near a flat plate bounded system. The fluid is now contained 
which rotates in a synchronously rotating in a cylinder of radius a and height 2h which 
surroundings [6. 7. 91; the axis of rotation is in rotates about its vertical axis at a constant 
the plane of the plate. As pointed out by Manoff angular velocity 0 (Fig. 1). The top 
and Lemlich [9], it is important to differentiate surface is again heated relative to the lower 
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surface; each is isothermal. The curved side 
wall was taken to be either perfectly insulated 
(no heat loss at any height) or perfectly conduct- 
ing. (By perfectly conducting we mean that the 
temperature of the side wall varies linearly 
between that of the hot upper surface and the 
cool lower surface.) It was found that the 
presence of the side wall had a significant effect 
on the rate of heat transfer from the upper to 
the lower surfaces. Secondly, it is shown that the 
type of boundary condition imposed at the side 
wall has a substantial effect on the top and 
bottom plate Nnsselt numbers. (Much greater 
than would be expected from experience with 
non-rotat~g natural convection.) It is seen 
that any analysis based on a radially unbounded 
system may or may not be the limit of any 
physically realizable experiment. In fact, it is 
shown in [4] that the Nusselt numbers of the top 
and bottom surfaces of a cylinder with a 
perfectly conducting side wall approach the 
Nusselt numbers for the radially unbounded 
system [5] as the cylinder radius is increased, 
but the Nusselt numbers for the cylinder with 
insulated side walls do not. 

We have also been carrying out an experi- 
mental investigation of the rotating cylinder 
described above [l, 81. In order to facilitate a 
comparison between the experimental and 
mathematical results, we have extended the 
analysis of [3] and this extension is the contents 
of the present paper. We consider two features. 
First, in the experimental apparatus the side 
wall of the cylinder is made of acrylic plastic and 
heavily covered with insulation to minimize 
heat loss. It is important to know the effect of 
side wall heat losses on the Nusselt numbers of 
the top and bottom disks since as shown in [33 
the boundary condition at the side wall has a 
large effect; thus we determine below the 
dependence of the Nusselt numbers on a known 
side wall heat transfer coefficient. In the second 
part of this paper, we consider a constant heat 
flux boundary condition of the top and bottom 
disks rather than the isothermal condition con- 
sidered in [3]. 

TOP AND BOTTOM SURFACES ISOTHERMAL, 
HEAT LOSSES OUT SIDE WALL 

Consider a right circular cylinder of height 2h 
and radius Q rotating about its vertical axis with 
a constant angular velocity w. A Newtonian 
fluid is enclosed in the cylinder. The top and 
bottom surface temperatures are T, and K 
respectively where AT = (T, - C&)/2 > 0. It is 
assumed that the resultant flow is steady, 
laminar and axisymmetric. The analysis is 
restricted to the case where a characteristic 
Reynolds number is large such that boundary 
layers form on all the cylinder surfaces. We 
assume that the density is constant except when 
multiplying the gravitational or cent~fugal 
accelerations where we take 

P = PoP - a(T-- ;r,)l. (1) 
The subscript denotes a reference state and c1 
is the coefficient of thermal expansion. All other 
fluid properties are assumed constant. 

The equations of continuity and motion are 
then 

v-q=0 (2) 

iI l vq -t 2o(k x 4) + or2dT- T,)i 

-ga(T- 7# = - po-lvp’ -i- vv2q (3) 

where k and i are unit vectors in the vertical and 
radial directions respectively and p’ is defined 

by 

p’ = p -+ zp,g - jpofU2r2. (4) 

We introduce a stream function into (3) 
cross differentiate and subtract the r and z 
components to eliminate p’, and substitute the 
dim~nsionle~ quantities _ 

r* = r/a, z* = z/h, 

- p, AT= (T, - l&‘2, I (5) 

i 
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This gives 
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L 
- r- 2tj,(_!Yjf$), - + 1 

-v, + r-T, + Ay-‘T, = W1_Y$b (6) 

/?[rm2$!$f] + r-l$z = 6r-‘_Y~(ru). (7) 

All quantities in (6) and (7) are dimensionless. 
The stars have been omitted for ease of writing. 
The nomenclature is the same as used in [3]. 
The dimensionless energy equation is 

o/j 

[ 1 

r- 1wJ-l 
a@, r) 

= &v;T 

The operators _S$ and Vt are defined by 

The subscripts r and z denote differentiation 
with respect to that variable. 

There are thus five dimensionless parameters 
which so far have arisen : 

E = vi2mh2 (the Ekman number), 
cr = c&k (the Prandtl number), 
t 1 t;fT (the thermal Rossby number), 

A = $zo2a 
(the aspect ratio), 
(the acceleration ratio). 

We assume E, A and fi to be small and D and y 
to be order one. Another grouping, 1 z o/?E-*~ 
is of interest. If 2 is small, conduction dominates 
over convection as a mechanism for transferring 
heat in the region between the Ekman layers 
on the horizontal surfaces; the Nusselt number 
is then not much greater than one. As 1 increases, 
so does the Nusselt number. We thus treat the 
situation where 1 = o(1) and convection is an 
important mechanism for heat transfer. 

The boundary conditions for the velocities are 

a* 
v=*=dn=” (10) 

J. L. HUDSON 

on all solid surfaces where n is the outward 
normal. For the temperatures of the top and 
bottom surfaces there is 

T=+l, z=+l. (11) 

The heat transferred to the surroundings at 
the side wall is assumed to be given by a dimen- 
sional relation of the form 

-k;= U(T- T,), r = a. (12) 

Here U is some overall heat transfer coefficient 
at the side wall, T, is the ambient temperature 
far from the wall, (room temperature, say), k 
is the thermal conductivity of the fluid, and T 
is the fluid temperature. We put (12) in dimen- 
sionless form by setting, as before, 

T* = CT- TJ 
~ AT= (T, - T,)/2, AT ’ 

To = CT, + 73/Z 

and introduce the parameters, 

Nu,, = Uh/k 

r* = r/a (13) 

K = (TO - T,)/AT 
(14) 

Nu,, is an “external” Nusselt number, specified 
a priori. Thus (12) takes the dimensionless form 
(dropping the stars), 

aT 
-_= 
ar - yNu,,( T + K). (15) 

We note that for T, z Tb, there is K z 1; for 
T, ? T,, there is K z - 1. Therefore, a realistic 
range for K is 

-l<K<l. (16) 

The only difference between the problem 
treated in [3] and that considered here is the 
boundary condition at r = 1. In [3] we showed 
that by means of a boundary layer analysis that 
the governing equations could be reduced to 

- J2%9,,, = v;e, (17) 

where &, is the leading term in a series expansion 
for the overall temperature; this equation still 
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holds here. The boundary conditions at the 
horizontal surfaces are 

8, = * 1, 2 = & 1. (18) 

For perfectly insulated side walls the boundary 
condition at r = 1 is 

0 =-l,y2(j 
0.r J2 o,r> r = 1 (19) 

under the restriction A $ &lb [3]. For A $ E: 
the boundary condition at r = 1 is non-linear. 
However, the results obtained using the linear 
and non-linear boundary conditions are not 
greatly different. We therefore restrict our 
attention in this paper to the simpler linear 
boundary condition. When heat is allowed to 
be transferred through the side wall the 
boundary condition is [from (15)] 

e +% OJ J2 Ozz = - YN%x(~o + w. (20) 

This, of course, reduces to (19) when Nu,, is 
zero. 

Equation (17) with (18) and (20) is solved by 
expanding in an infinite series 

where 

8, = z + f Q”(r) X,(Z) 
PI-=1 

xp = exp (- Lz/J2) sin [+r(.z + l)] 

j3: = AZ/2 + ($p)’ p = 1,2,. . . 

1 = f w,(z) 
n=l ! 

(21) 

(22) 

and the xp form a complete set on ( - 1,l) and 
are orthonormal with weighting function 
exp (J(2)Az). The Q”(r) are given by 

J(2)& @A9 = cJo(B,yr) + ---. 
P,’ (23) 

Since at this point the respresentation (21)-(23) 
satisfies the differential equation (17) and the 
isothermal conditions (18) the only unknowns 
are the constants c,. These are determined by 
the remaining boundary condition, (19). The 

series (21) is substituted into (19), and the result 
is multiplied by exp (,/(2)iz) x,(z) and inte- 
grated from z = - 1 to z = + 1. The resulting 
linear algebraic equations for the c, were 
truncated at N terms and solved by standard 
matrix methods. 

Given in Table 1 are Nusselt numbers for a 
few representative cases. The Nusselt numbers 
for the top and bottom plates are given by 

1 

Nu(+l) = 2 rdr. GW 

:=*1 

The Nusselt number is the ratio of the total 
heat transferred to that which would be trans- 
ferred by conduction only. These results were 
obtained by inserting the series representation 
for 8 into (23a), integrating, and numerically 
summing the resulting series. The number of 
terms taken was between 100 and 125. No 
attempt at a complete 4-parameter study 

(& Y, Nu,,, K) was made, but effects of Nu,, 
and K on the previous results were noted. 
(Previous cases for Nu,, = 0 are included here 
for reference.) The first set given is for 3, = 0.0, 
(no convection), and serves to point out the 
symmetry in K for this case, viz., 

Nu(+l,K) = Nu(T1, -K), A = 0. (24) 

These calculations also assure us of the relia- 
bility of subsequent results. 

A number of runs were made for Nu,, = 1.0. 
(It is noted that from (14) it can be seen that 
Nu,, will not exceed 1.0 for almost all experi- 
mental conditions. Nu,, = 10 is considered 
below, but this is an extreme case.) The relevant 
results in Table 1 show the following: When 
K = 0 (To near T,) and L = 0.1. the Nusselt 
numbers for the horizontal surfaces found for 
Nu,, # 0 do not differ greatly from those for 
Nu ex Y 0; this does not hold for 3, = 0.5. For 
the smaller A this is the case because the cold 
fluid leaving the bottom Ekman layer loses heat 
to the surroundings for approximately half of 
the distance up the side wall [( Tfluid - T,) > 01, 
and gains heat from the surroundings for 
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Table 1. Nusselt numbersfor external radial heat transfer 

d Y N% K Nu( + 1) Nu( - 1) 
_ .___ 

0.0 2.0 I.0 1.0 I.883 0,647 
0.0 1,265 1,265 

- 1.0 0.647 1.883 
0.1 10.0 @O 1.046 1.046 

1.0 0.0 1.037 1,115 
1.0 1.0 1.199 1.016 
0.1 1.0 1,061 1,040 
0.1 0.0 1,036 1,054 
0.1 - 1.0 1,012 1,067 

0.5 1.0 0.0 1.050 1,050 
1.0 1.0 2.66 0.524 
1.0 0.0 1,500 1,616 
1.0 - 1.0 0,342 2.700 

10.0 0.0 3.09 3.21 
0.01 13.6 0.1 1.0 1,019 0,993 
0.05 1.0322 1,012 
0.10 1.063* 1.056 
0.20 1.1 li- I.196 
0.50 _ 1.946* 

* Poor convergence 
t No convergence. 

approximately the upper half of this wall. Thus, 
at the top, the temperature contrast between the 
top plate and a fluid element entering the top 
Ekman layer is (for Nu,, = 1.0) approximately 
what it was when no external radial heat transfer 
was allowed. Thus the Nusselt numbers are 
approximately the same in the two cases. For 
higher i, convective effects rearrange the iso- 
therms near the side, and the above argument 
fails. 

For K z + l-0, (Tb z T,), the fluid traveling 
up the side wall loses heat to the surroundings 
for approximately the entire distance. The 
effect then is a larger temperature difference 
between the fluid and the top wall with a 
corresponding increase in Nu( + 1). Since heat 
was lost out the side, Nu( - 1) must drop in 
value to satisfy a total heat balance. For 
K g 1.0, (T, z T,), the situation is reversed. 
Heat is gained through the side walls, since 

(Tfluicl - T,) < 0, with a corresponding decrease 
in Nu( + 1) and increase in Nu( - 1). 

Also in Table 1 is a case for Nu,, = 10.0, 
K = 0. The Nusselt numbers at z = + 1 and 

z = - 1 for this case are approximately equal, 
but are roughly twice as large as the correspond- 
ing insulated case. That they are nearly equal 
follows from the fact that for K = 0, heat is 
gained and lost over the bottom and top halves 
of the side walls, respectively. The total loss 
(or gain) over the side is nearly zero; hence, 
Nu( + 1) G Nu( - 1). The fact that they are 
larger than the corresponding insulated case 
can be explained as follows. Consider a fluid 
element on its way up the side wall, starting near 
the middle z E 0.0. As it moves toward the top, 
its (dimensionless) temperature increases to- 
ward the top temperature (+l.O). However, it 
also begins to simultaneously lose large amounts 
of heat out the-side wall (Nu,, 9 IlO), which 
tends to lower its temperature; the net result 
of these opposing effects is to increase the 
temperature difference (and hence, the heat 
transfer), between the top plate and the fluid 
element as it enters the top Ekman layer. Thus, 
the Nusselt number is larger than in the case 
of a similar fluid element which did not lose any 
heat on its way up the top half of the side wall. 
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The results of this analysis of interest to the 
experimentalist indicate that to adequately 
approximate insulated walls, the restrictions 

N&X < O(f) 

K z 0.0 

J < 0.1 1 

(25) 

or 
NM,, 4 1.0 

K#O (26) 
A = O(1) 

should be met. 

SPECS HEAT FLUX AT TOP AND BOTFOM 
SURFACES; INSULATED SIDE WALLS 

We consider here the same rotating cylinder 
(radius a, height 2h), shown in Fig. 1, but assume 
that the sides are insulated, and that the heat 
flux per unit area, Q, to the top and bottom is 
specified, It is assumed that Q is independent of 
radial position. The basic governing equations 
(2)-(4), of course, remain valid, and the only 
modification occurs in the thermal conditions 
at the horizontal surfaces. In making the 
equations dimensionless, we use Q in a de~nition 
of a characteristic temperature, since no tem- 
perature (other than TO, which is actually a free 
parameter), appears in the dimensional state- 
ment of the problem. 

The dimensional thermal condition is written, 

kg= t-Q, z= kh. (27) 

Thus, if we pick a dimensionless temperature 
(denoted by a star) 

T” L1: .iE(T- 
k 

and as before 
7* = z/h i. 

(27) becomes 

aT* 
- =I, z* = 
az* 

In the equations of motion, 
scale for the velocities which 

r,) (28) 

(29) 

_t I. (30) 

we pick a thermal 
balances the terms 

2wu, and 02raT, (Coriolis and centrifugal 
buoyancy), which yields 

Comparison with the previous 
thermal boundary conditions (5), 

(31) 

scale for iso- 

(32) 

shows that the formulation of the dimensionless 
equations will become identical if ATis replaced 
by QhJk. Thus, the dimensionless equations 
become identical to (6)-(8), if p is replaced 
everywhere by 

j*=$. (33) 

Due again to the smallness of or, for most 
situations j?* 4 1, and we seek solutions to the 
convection problem for the same range as 
before, namely 

Ofi* = q&-f). (34) 

The approach is then quite similar to the 
previous case. For #?* 4 1, we attempt to solve 
the dimensionless equations (dropping the stars 
on variables), 

-0, + rT, + Ay-lT, = m-‘S’$j 

($* r- &+,T) _ 
W,r) 

ql: 

The boundary conditions are now 

%I z=+l 
a2 3 - 

Es0 r=l 
dr ’ 

together with the dynamical conditions 

v=$+o 

(35) 

(36) 

(37) 

(38) 

(39) 

(40) 
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on solid boundaries. Again we assume A, E + 1, 
and seek a boundary layer solution. Away from 
solid boundaries, we have overall components 
of velocity and temperature which satisfy, 

v, = re, (41) 

$z = 0 (42) 
where 

i at+b ae 

- $$ [r2(3e, + e,)] $” = v;e (51) 
,_ 

-ap*y5z = Ev;e. (43) 

Our first step is to construct Ekman layers and 
corrections to v, II/, and 8 within these layers. 
Corrections to 0 are O(s) here, so 8 must satisfy 

3.* = a/?*/&+, (53) 

plus a boundary condition at r = 1. To derive 
this condition, we must, of course, go through 
a detailed boundary layer analysis for the side 
walls, in which we would reduce v in the core to 
zero at the walls by use of boundary layer 
correction functions, and we would insure that 
the volume flux through the side layers matched 
that in the core. A subsequent solution of the 
energy equations in the side layers would yield 
expressions for the radial heat flux due to 
boundary layer corrections to the temperature. 
which would then be used in writing condition 
(39). All this, of course, has been done in [3] 
and the analysis in this case would not differ. 
since we have assumed here that A*, y = 0 (1). 
Hence, in this case the side layers would have 
closed circulations, double or triple structures, 
etc., which would yield a complicated expression 
for the boundary condition on 0. We assume, 
however, that this condition can be written 
in the linear form (contributions due to the 
closed circulation are neglected), and a generali- 
zation of this linear form then becomes 

by itself. The Ekman layer solutions necessary 
to reduce 2) to zero at z = f 1 are easily found 
as in [3] with the result that the Ekman suction 
velocity is again O(s*). Equations (41) and (42) 
integrate simply to give 

v(r,z) = e(r,z) + h(r) (45) 

* = *(r). (46) 

Then in the usual manner, the Ekman suction 
condition that the axial velocities must match 
will yield h(r) and $(r). This condition is 

W = i$‘” _;*l. (47) 
z=il 

Use of (47) gives 

(48) 

$(r) = 8 r2W,W + e,(r)1 (49) 

In (48) and (49) e,(r) and e,(r) denote the plate 
temperatures at z = + 1 respectively, viz. 

e,(r) = e(r, + l), 

e,(r) = e(r, - 1). 

ae ~ = -3.*p [$(r)E-i] g!, r = 1. 
ar (54) Z 

Here $(r) is the value of the core stream function, 
which is determined by Elkman suction and 
given by (49). Thus (54) becomes 

de -=_ 
ar /;*;t [30,(r) + O,(r)] g, ,’ = 1 (55) 

-\ 

These are unknown in the present problem. 
Thus, we have u and tj expressible in terms of the 

Equations (51) (52) and (55) now must be solved 
for 0. This is formally a non-linear problem, but 
we will be able to obtain a series solution. 
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The form of (52) suggests seeking a solution 
of the form 

e(r,z) = z + G(r). (56) 

With this assumed functionality, the problem 
for @ then becomes a linear one. We note that 

38, + 8, = 3(1 + @) + (- 1 + CD) = 2 + 4@. 

Hence, @ satisfies 

Id;!!! = _ 21z*y2 
r dr dr J2 

(57) 

d@ 
-_= 
dr 

-3(1+2@), 
J2 

r = 1. (59) 

As we will see, @ can be determined to within 
an additive constant; this reflects the fact that 
original problem contained thermal conditions 
which involved only derivatives of the tempera- 
ture. Thus, any constant plus a solution is also 
a solution. We take this constant to be zero, 
which means we may only determine differences 
in temperature using the solution generated for 
@. 

We now define 

2*y2 

s=J2 
and assume CD (r) has a series in s, viz. 

Q(r) = f s”@,(r). 
n=l 

From (58) and (59) we obtain 

Id do 
--r- = - 2, 
r dr dr 

d@ 
-= - 
dr 

1, r = 1. 

Also 

d9,= 
dr 

-2@n-1, r=l 

(60) 

(61) 

(62) 

(63) 

(64) 

(65) 

for n = 2,3,. . . . tPp,can be determined as 
_I 

G1 = -f+d, (66) 

where d is an arbitrary constant. For simplicity 
we take d = 0, with the understanding that the 
results are to be interpreted as difference 
between 8 and some arbitrary temperature, or 
between 13 at two different points. 

The next few Qm are 

9 2 = r4/4, 

@ 3 = - P/12, 

@ = r8/48 
(67) 

4 1 

Q5 = - Goi J 
We now deduce the general relations, 

@” = ( -;A; r2”. (68) 

The proof is by induction. Assume (68) is true 
for n. Qn+ 1 satisfies (64) and (65) viz. 

1 d d@,+, r-= 
r dr dr 

- 2i$(r@,) 

(- l),+ ‘(2n + 2) r2n 
= 

n! 
(69) 

d@,+ 1 

dr 
(--l).+l r = 1 

=n! 

The solution to (69) and (70) yields 

(70) 

@ 
t--l)“+’ r2n+2 

n+l =(2n n! 

= (_,),+l r4n-l~ 

2(n + l)! (71) 

which completes the proof. Thus, the function 
Q(r) has the representation, 

(72) 

The series is, of course, convergent for all 
/I*, yO, /I*y2 < Co. 
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It is of interest to examine the solution evalu- 
ated at the top plate. Since 8 is known only to 
within a constant, we arbitrarily set 0 (0-l) = 1. 
Then 0 {r. I), the top temperature at any radius, 
becomes 

@,l) = 1 + ; 
c 

( - l)nSV” 

n! -’ 
(73) 

This function has a maximum at I = 0, and is 
concave downward, which means the top sur- 
face temperature decreases with increasing 
radius. This is caused by the fact that cool fluid 
from the bottom surface flows upward near the 
cylinder side wall and thus cools the top surface. 
From (33) and (53) it is seen that the parameters 
/I* and L* both increase with increasing heating 
rate Q. Thus we see from (60) and (73) that non- 
isothermaliteies of the top plate temperature 
increase with increasing heating rate; i.e. the 
difference in the top plate temperature at 
P = 0 and r = 1 increases with increasing Q. 
In experiments the actual top surface will be 
somewhere between a perfectly isothermal and 
a perfectly constant heat flux condition. Thus. 
(73) can be used to give a conservative u priori 
estimate of the temperature variation along a 
radius of the top plate. 
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TRANSFERT THERMIQUE DUN FLUIDE CHAUFFI? PAR LE HAUT DANS UN CYLINDRE 
TOURNANT 

R&n&-On presente une analyse math~matique de la convection thermique conduite par centrifugation 
dans un cylindre qui tourne autour de son axe vertical. On fait deux extensions d’un travail anterieur. En 
premier on considtre un flux thermique a travers la paroi la&ale du cylindre et on determine son effet 
sur le nombre de Nusselt au sommet et a la base du cylindre. En deuxieme lieu on recherche une condition 

limite de flux thermique constant pour les surfaces horizontales. 



HEAT TRANSFER IN A ROTATING CYLINDER OF FLUID 

WARMEf-lBERGANG IN EINEM FLUSSIGKEITSGEFULLTEN ROTIERENDEN ZYLINDER, 
DER VON OBEN BEHEIZT WIRD 

Z~ammenf~s~g-Die durch ~ntrifugalkr~fte bewirkte thermische Konvektion in einem Zylinder, 
der urn seine vertikale Achse rotiert, wird mathematisch untersucht. Friihere Arbeiten werden in zweifacher 
Hinsicht erweitert. Erstens wird der Wlrmestrom durch die Mantelfllche des Zylinders beriicksichtigt 
und sein Einfluss auf die Nusselt-Zahl an der oberen und unteren Stirnflache bestimmt. Zweitens wird 

die Randbedingung konstanten Warmestroms an den Stirnflachen untersucht. 

hKHOTS3qA~-~pPJ.(CTaBJIeH MaTeMaTWIeCKklti aHaJfIl3 TeIiJfOBOti KOHBeH~HPi B r(LlIkIHfipe, 

BpaLI(afOlqeMCR BOKpyr BepTWWlbHOti OCII. Pe3yJIbTaTbt IIpeRbfnyIQei pa6oThf 0606~eHE.f B 

RByX HaIIpaBJIelffVfX. Bo-nepmx, yYTeH TeffJIOBOfi IIOTOK qepe3 6OHOByM CTeHKy r(ffJIPIH~pa 

H OftpeAeJIeHO er0 BJIIlRHIIe Ha WCJIO HyccenbTa ,l(Jfft BepXHeFO Iz HH~Hel'O OCHOBaHHt 

Imnis~pa. Bo-BTOPNX, peufeffa 3aEasa c IIOCTORHH~~M TefLZOBbIM ROTOKOM Ha I'OpH3OHTa- 

JIbHbIX FIOBepXHOCTffX. 
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